If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2+19a-4=0
a = 5; b = 19; c = -4;
Δ = b2-4ac
Δ = 192-4·5·(-4)
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-21}{2*5}=\frac{-40}{10} =-4 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+21}{2*5}=\frac{2}{10} =1/5 $
| v-9/10v=17 | | 2x+11=5x-6 | | 5x+5=-5x-3 | | (7+9)*3/x=76 | | 6m-18+11=8m-3 | | 85g+12=300 | | (x-7.5)/2.0=-1.2815 | | (2x÷9+(5x)÷2)÷(2)=0 | | x-3/7x=112 | | 23-44*x=199 | | 5n+3=0 | | (x+8)+3x+1=2x+19 | | 8c-90=6 | | 1/2(8-6x+5)=94 | | -5-(5x)=-15 | | 5/4y=16+2/3 | | 8x-3(2x-4)=2(x-6) | | 4(x+6)-8x=4 | | 7=-17+2x | | 5d+5.25=50.2 | | 3(−5x+4)−4x+1=89 | | x=6(-2x-3)=-7 | | (1+x)+x=1.5 | | (x-50)/14=-1.6448 | | 5.55555555x=0.8-77 | | 12g+11.45=5.6 | | k+3-2k=-3 | | w^2=4w-1 | | 5m+14=19 | | 30=5(x-3)/5 | | m÷0.8-0.04=8.96 | | 4+x-6=1/4(12x+8) |